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Abstract.  Keywords: 

This study explores the development and application of a praxiology-based 
instrument designed to identify and address learning obstacles in the teaching 
of the concept of proportion in early algebra. Proportion plays a crucial role in 
connecting concrete numerical concepts with abstract algebraic thinking; 
however, many students face significant challenges when transitioning from 
numerical to algebraic representations. The study utilizes a praxiology 
framework, which emphasizes the relationship between the type of 
mathematical task, the techniques employed by students, and the underlying 
theoretical principles that shape students' understanding. This framework 
provides a deeper understanding of how task design can influence students' 
mathematical practices, making it particularly effective for diagnosing learning 
obstacles in proportion-related tasks. The instrument, which was applied to 
seventh-grade students in Bandung, Indonesia, consists of five types of tasks 
aimed at developing students’ skills in arithmetic-algebraic representations and 
solving linear equations in both abstract and contextual forms. By predicting 
students' potential solutions and analyzing their problem-solving strategies, the 
study highlights how the praxiological approach facilitates the identification of 
key difficulties in students' understanding of proportion. The findings 
demonstrate that this approach not only helps to diagnose learning obstacles 
more effectively but also supports the creation of targeted instructional 
strategies that improve students’ grasp of proportional reasoning. This research 
contributes valuable insights into the use of praxiology in mathematics 
education, offering a robust framework for analyzing and overcoming learning 
obstacles in early algebra instruction. 
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INTRODUCTION 
The concept of proportion is a cornerstone in early algebra and plays a pivotal role in 

bridging the concrete world of numbers with the abstract realm of algebraic variables. Mastering 
proportion is essential for developing complex mathematical problem-solving skills, as it not only 
underpins various areas of arithmetic but also forms the foundation for understanding more 
advanced concepts such as linear equations and functions (Van de Walle, Karp, & Bay-Williams, 
2014). However, students frequently encounter significant challenges when learning about 
proportion. These challenges often stem from difficulties in transitioning from concrete numerical 
understanding to the abstract manipulation of algebraic variables, as well as a lack of real-world 
contextualization and problems with visual representations (Charalambous et al., 2010; Fernández 
et al., 2024). 
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Learning obstacles in proportion are particularly important to address because they can 
hinder students’ ability to apply proportional reasoning, which is vital not only in mathematics but 
in everyday life situations such as financial planning, scale models, and data interpretation. Without 
a solid understanding of proportion, students may struggle in later stages of their mathematical 
education, especially in algebra and beyond. Given the foundational nature of proportion and its 
central role in developing algebraic thinking, addressing these learning obstacles is crucial for 
students' long-term mathematical success. 

A key approach to overcoming these learning barriers is through praxiology, a framework 
that examines mathematical practices in context. Praxiology focuses on the relationship between 
tasks, techniques, and the underlying theoretical principles, offering a comprehensive approach to 
understanding and analyzing students' mathematical thinking. The praxiological framework has 
been shown to be particularly useful for identifying learning obstacles, as it allows for a more 
nuanced understanding of how students engage with mathematical tasks (Trouche, 2016). By 
analyzing the tasks and techniques students employ, praxiology provides insights into the cognitive 
and conceptual challenges they face, which can then inform the design of more effective learning 
tools. 

In the context of proportion, praxiology can be used to structure tasks that both diagnose 
and address students’ difficulties. Bosch and Gascón (2006) introduced mathematical praxeology 
as a model for understanding mathematical knowledge through its practical application. By 
analyzing tasks, techniques, and the associated theoretical frameworks, praxiology enables a deeper 
exploration of how students solve problems and the obstacles they encounter. This approach, 
when applied to the teaching of proportion, allows for the identification of specific learning 
obstacles, such as misconceptions about ratios or difficulties in applying proportion in diverse 
contexts. 

Preliminary research has indicated that praxiological analysis can significantly enhance the 
design and effectiveness of instruments aimed at detecting learning obstacles. By applying this 
framework to the development of a learning obstacle instrument, this study seeks to build on prior 
work by providing a more detailed understanding of how praxiological analysis can be used to 
identify and address students’ difficulties in learning proportion. This study also builds on the work 
of Putra and Witri (2017), who demonstrated the efficacy of praxiological tools in mathematics 
education, and aims to develop an instrument specifically tailored to the challenges of early algebra 
and proportion. 

This research makes three important contributions to the field of mathematics education. 
First, it designs and tests an instrument based on the praxiology framework to analyze learning 
obstacles in the teaching of proportion. By aligning the instrument with real and contextualized 
mathematical practices, this study offers a more accurate method for identifying barriers to 
understanding. Second, the research provides an in-depth analysis of learning obstacles specific to 
the concept of proportion, offering new insights into how these difficulties manifest and how they 
can be overcome. Finally, the study introduces a praxiology-based evaluation framework to assess 
the effectiveness of the instrument in identifying and addressing learning obstacles. This evaluation 
framework provides a valuable tool for educators seeking to improve students’ understanding of 
proportion through targeted instructional strategies. 

From the perspective of Didactic Anthropology Theory, mathematical praxiology is an 
essential tool for exploring the cognitive processes involved in solving mathematical problems and 
understanding the justifications behind different mathematical approaches (Bosch & Gascón, 
2006, 2014; Chevallard, 2019). Previous studies have highlighted the usefulness of praxiological 
analysis in examining mathematical thinking and its application in teaching (Asami-Johansson, 
2021; Lundberg & Kilhamn, 2018). This study extends these insights by applying praxiological 
analysis specifically to the learning of proportion in early algebra. Through this approach, we aim 
to contribute to the growing body of research on praxiology in mathematics education and provide 
new strategies for addressing learning obstacles in the classroom. 
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By examining the intersection of praxiology and proportion, this study aims to enhance the 
design of educational instruments that can better diagnose and address students' learning obstacles, 
ultimately improving their understanding of proportion and supporting their transition to more 
advanced algebraic concepts. This research fills a gap in the existing literature by offering a more 
comprehensive and contextually grounded approach to analyzing and overcoming learning 
obstacles in mathematics education. 

The primary objectives of this study are: 1) To design and test a praxiology-based instrument 
that identifies learning obstacles in the teaching of proportion to early algebra students. 2) To 
analyze the nature and causes of learning obstacles in the concept of proportion, using a praxiology 
framework. 3) To develop a praxiology-based evaluation framework for assessing the effectiveness 
of the instrument in overcoming these obstacles and improving students’ understanding of 
proportion. Through these objectives, this study aims to provide a deeper understanding of the 
role of praxiology in mathematics education, particularly in the context of early algebra, and offer 
practical tools for educators to address learning difficulties in proportion. 
 

METHOD 
This study investigates the development and application of a learning obstacle instrument 

aimed at identifying and addressing challenges in understanding the concept of proportion in early 
algebra. The methodology focuses on the design and implementation of the instrument, as well as 
the theoretical framework underpinning its development. The instrument consists of five 
mathematical tasks designed to diagnose and address common learning obstacles associated with 
the concept of proportion. These tasks were implemented in a seventh-grade classroom at a junior 
high school in Bandung, Indonesia. 
 
Development of the Learning Obstacle Instrument 

The instrument was developed based on a praxiology framework, which emphasizes the 
relationship between tasks, techniques, technological discourse, and the underlying theoretical 
principles guiding mathematical problem-solving. Each task was carefully designed to reflect key 
challenges in students’ understanding of proportion, particularly focusing on the transition from 
concrete numerical representations to abstract algebraic variables, contextual understanding, and 
the use of visual representations. The five tasks selected for this study were chosen to address 
these specific learning obstacles, drawing on prior research that identified these as common 
difficulties for students when learning proportion (Charalambous et al., 2010; Fernández et al., 
2024). 

The selection of the five tasks was informed by both theoretical considerations and 
pedagogical needs. These tasks aimed to reflect real-life situations where proportion is applicable 
and to require students to engage in a range of mathematical practices, from basic arithmetic to 
algebraic reasoning. The tasks were structured to allow for the observation of various mathematical 
techniques and the identification of the learning obstacles students might encounter. 
 
Sample and Participant Selection 

The study was conducted in a seventh-grade classroom at a junior high school in Bandung, 
Indonesia, comprising 30 students (15 males and 15 females). The selection of this sample was 
based on the typical curriculum in Indonesian junior high schools, where the concept of 
proportion is introduced as part of early algebra instruction. This class was chosen because the 
students were at the appropriate stage in their mathematical education to encounter difficulties 
related to the concept of proportion. 

The sample size of 30 students was determined to provide a sufficient number of 
participants to identify common patterns in learning obstacles while ensuring practical feasibility 
within the classroom setting. A sample of this size also allows for meaningful data analysis without 
overwhelming the research process. 
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Instrument Validation and Reliability 
To ensure the reliability and validity of the instrument, a pilot study was conducted prior to 

the main implementation. The pilot study involved a smaller group of 10 students who completed 
the tasks, and their responses were analyzed to identify any ambiguities in the task design or areas 
where students struggled. Based on feedback from the pilot study, the instrument was refined to 
improve clarity and alignment with the research objectives. 

Additionally, the instrument’s validity was assessed through expert review. A panel of 
mathematics educators with experience in both classroom teaching and educational research 
reviewed the tasks for their alignment with the theoretical framework and their ability to diagnose 
the specific learning obstacles associated with the concept of proportion. Adjustments were made 
based on expert feedback to ensure that the tasks addressed the intended learning outcomes and 
accurately captured the difficulties students face. 

Reliability was assessed through test-retest procedures. The tasks were administered to the 
same group of students at two different points in time, and the consistency of their responses was 
evaluated. The results indicated a high level of consistency, suggesting that the instrument was 
reliable for measuring students' understanding of proportion and identifying learning obstacles. 
 
Data Collection and Analysis 

The primary data collection method involved administering the five tasks to the students 
during regular mathematics lessons. The tasks were designed to assess different aspects of 
proportional reasoning, including arithmetic-algebraic representations and the application of 
proportion in contextualized scenarios. Student responses were recorded, and their problem-
solving techniques were carefully analyzed to identify common patterns of difficulties and 
misconceptions. 

Data analysis was conducted using a mathematical practices approach, which involves 
examining the relationships between the tasks, the techniques students employed to solve them, 
and the theoretical frameworks that informed those techniques. The approach focuses on 
understanding how students interact with mathematical tasks and how their problem-solving 
processes reveal underlying learning obstacles. This method allowed for a comprehensive analysis 
of students’ responses, providing insights into the specific challenges they faced and the strategies 
they used to overcome them. 

Additionally, praxiological analysis was used to examine the four components of each 
mathematical task: the type of task, the techniques used, the technological discourse, and the 
theoretical principles underpinning those techniques. By analyzing these components, we were 
able to identify how students’ mathematical practices related to the conceptual understanding of 
proportion and where these practices diverged from the expected solutions. 
 
Limitations of the Methodology 

While this methodology provides a comprehensive approach to analyzing learning obstacles 
in the teaching of proportion, several limitations must be acknowledged. First, the study was 
conducted in a single classroom, which may limit the generalizability of the findings to other 
educational contexts. The specific cultural and educational setting in Bandung, Indonesia, may 
have influenced the way students approached the tasks and their understanding of proportion. 
Future research should consider replicating this study in different regions or countries to explore 
whether the identified learning obstacles are universally applicable. 

Second, the sample size of 30 students, while sufficient for this study, is relatively small. A 
larger sample would allow for a more robust analysis of the patterns in student responses and 
could provide more statistically significant insights into the effectiveness of the instrument. 
Furthermore, future studies could explore the long-term effectiveness of praxiology-based 
instruments by tracking students’ progress over an extended period. 

Finally, while the study employed a praxiological approach to identify learning obstacles, it 
did not explore the effectiveness of specific instructional interventions that could address these 
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obstacles. Future research could examine how the instrument can be used in conjunction with 
targeted teaching strategies to improve students' understanding of proportion. 

In summary, the methodology outlined in this study provides a detailed and structured 
approach to developing and implementing a praxiology-based instrument for identifying learning 
obstacles in the teaching of proportion. By combining theoretical considerations, expert validation, 
and rigorous data analysis, this study contributes to the growing body of research on the use of 
praxiology in mathematics education. Despite some limitations, the findings suggest that the 
instrument is effective in diagnosing learning obstacles and provides valuable insights into the 
specific challenges students face in mastering the concept of proportion. 

 
RESULTS AND DISCUSSION 

In the transposition process to develop teaching objects, the researcher analyzed the 
mathematics learning process in elementary schools to identify various problems that occur, and 
analyzed the learning obstacles of the concept of proportionality in secondary schools. The 
following discusses the learning obstacle analysis of the concept of proportionality in secondary 
school students based on each of the given problems. The researcher also explained the problems 
based on praxiology, so that there are techniques, technologies and theories that underlie the task. 
 
Problem 1 

The task type in problem 1 is a missing value problem. The familiar context is in food 
nutrition labeling, the unit rate is not given, and the possibility of being tricked by the absence of 
integer change factors between the given ratio pairs. The praxeological explanation presented in 
Table 1 is the subject of discussion in problem 1. 

 
Table 1. Praxiology in problem 1 

Task 1 Technique 1 Technology 1 Theory 1 

In 8 grams of 
snack food, 
there are 48 
calories. In 16 
grams, there 
are 96 calories. 
How many 
calories are in 
20 grams of 
snack food? 

The correct technique 
can be seen from the 
student's answer in 
Figure 4.6, using the unit 
ratio approach. The unit 
ratio is determined by 
simple division across 
the size space, and then 
the unit ratio is used as a 
multiplier to determine 
the number of calories, 
with the unit ratio being 
6 calories/1 gram, then 
multiplied by 20 grams 
to get 120 calories. 

An analysis of the 
multiplication structure that 
provides an argument for 
the technique used is as 
follows. 
Gram Calories 
   8         48 
  16        96 
  20         ? 
An integer between the unit 
ratio size spaces of 6 
calories/1 gram is available. 
The unit rate must be 
derived. There is no integer 
in the scalar factor measure 
space for the computation 
required for 20 grams. 

The theory that justifies the 
technology is 
proportionality as a linear 
relationship between two 
covariant quantities 
according to the model y = 
mx, where m is the unit rate 
(Karplus et al., 1983; 
Lamon, 2007; Post et al., 
1988). In a proportional 
situation, two invariant unit 
rates exist across the size 
space. The unit rates are 
reciprocal and define 
inverse functions: y = mx 
and x = (1/m)y (Lamon, 
2007; Post et al., 1988, 
Vergnaud, 1983). 

 
Tasks  

In 8 grams of snack food, there are 48 calories. In 16 grams there are 96 calories. How many 
calories are in 20 grams of snack food? 
 
Learning Obstacle 

The researchers identified students’ learning obstacles related to Problem 1, as illustrated in 
Figure 1. 
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Figure 1. Learning obstacle 1 in problem 1 
 
The first learning obstacle is an incorrect addition strategy based on the first pair of grams of 
calories. Students work by (Number of grams) + 40 calories. It can be seen in Figure 1, students 
mistakenly use the addition strategy in the first statement, 8 + 40 = 48, resulting in further errors 
in the number of calories asked, 20 + 40 = 60. Students skip the second statement of the problem 
which states there are 16 grams in 96 calories, by not testing it through the method he obtained 
such as 16 + 40. Students do not use all the statements given, so students arrive at the wrong 
conclusion. 

The second learning obstacle is the erroneous development of the change factor approach. 
The addition reasoning where calories increased by 48 with the increase in grams doubled, from 8 
grams to 16 grams. Then 96 + 48 (48+48+48 or 48 x 3) is for a threefold increase in grams, which 
is 8 grams x 3 = 24 grams of snacks, not 20 grams as asked. Meanwhile, students worked on 48 + 
48 = 96, 96 + 48 = 144 as shown in Figure 2. 
 

 
Figure 2. Learning obstacle 2 in problem 1 
 

The third learning obstacle is the development of an erroneous change factor approach. The 
change factor approach is another approach that students use intuitively in proportional reasoning. 
This method utilizes the scalar multiplication relationship in measuring space. Multiplying, tripling, 
and so on are scalar operations. The scalar factor is not a constant, no constant factor is needed. 
Seen from Figure 3, students write 48 x 2 = 96, 96 x 2 = 192, the number of calories from the 
number of grams is multiplied by students according to the increase in grams, namely 16/8 = 2, 
this is not constant for all known grams, students should determine the number of calories by 
another constant factor, namely 20/8 if using the first description, or 20/16 if using the second 
description. Students may be fooled by the absence of integer change factors among the given 
ratio pairs. 
 

 
Figure 3. Learning obstacle 3 in problem 1 

Technique 
The correct technique can be seen from the students' answers in Figure 4, using the unit 

ratio approach. The unit ratio is determined by simple division across the measurement space, and 
then the unit ratio is used as a multiplier to determine the number of calories, with the unit ratio 
being 6 calories/1 gram, then multiplying by 20 grams to get 120 calories. 
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Figure 4. Answer to problem 1 

 
Technology 

Analysis of the multiplication structure which provides arguments for the technique used is 
as follows. 
Grams Calories 
     8        48 
    16       96 
    20        ? 
Integers between the unit ratio measurement spaces of 6 calories/1 gram are available. The unit 
rate must be reduced. There are no integers in the scalar factor measurement space for the 
computation required for 20 grams. 
 
Theory 

The theory that justifies this technology is proportionality as a linear relationship between 
two covariative quantities according to the model y = mx, where m is the unit rate (Karplus et al., 
1983; Lamon, 2007; Post et al., 1988). In the proportional situation, two invariant unit rates exist 
over the entire measure space. The unit rate is reciprocal and defines the inverse function: y = mx 
and x = (1/m) y (Lamon, 2007; Post et al., 1988, Vergnaud, 1983). 
 
Problem 2 

The second type of task (as outlined in Table 2), which is a generalization to the rule 𝑦 =
𝑚𝑥 which can be used to solve any pair of rates in a given proportion relative to the situation. The 
context used is the familiar context of unit rate. Assignments are non-routine tasks and students 
may not be familiar with the notation that may be used. 

 
Table 2. Praxiology in problem 2 

Task 2 Technique 2 Technology 2 Theory 2 

In 8 grams of 
snacks, there 
are 48 calories. 
In 16 grams 
there are 96 
calories. What 
rules can be 
used to 
determine the 
number of 
calories in each 
gram of snack 
food? 

The correct technique uses 
the invariant unit ratio of 6 
calories per 1 gram to the 
relationship structure y = 
mx, such as y = 6x, so that 
48 calories = 6 . 8 grams 
and 96 calories = 6 . 12 
grams. Generalizations 
were obtained as shown in 
the students' answers as 
shown in Figure 4.10, 

namely (⊡ gram). 6 = (⊡ 
calories). 

Analysis of the 
multiplication structure 
which provides arguments 
for the technique used is as 
follows. 
Grams Calories 
    8          48 
   16         96 
    x          6x 
Integer numbers between 
unit ratio measuring spaces 
of 6 calories/1 gram are 
available. The unit ratio 
must be reduced. 

The theory that justifies 
this technology, namely, 
proportionality is a linear 
relationship between two 
covarying quantities 
according to the model y 
= mx, where m is the unit 
rate. All corresponding 
pairs of speeds (x, y) are 
located on the graph of the 
line y = mx, which passes 
through the origin 
(Karplus et al., 1983; 
Lamon, 2007; Post et al., 
1988). 

 
Task 

In 8 grams of snacks, there are 48 calories. In 16 grams there are 96 calories. What rules can 
be used to determine the number of calories in each gram of snack food? 
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Learning Obstacles 
Researchers have identified student learning obstacles related to problem 2, as presented in 

the following figures. The first learning obstacle is the generalization of the wrong addition 

approach to the problem (refer to Figure 5), namely (⊡ grams) + 40 = (⊡ calories). 
 

 
Figure 5. Learning obstacle 1 in problem 2 
 

The second learning obstacle is the incorrect generalization of the addition approach to the 

problem (Figure 6), namely 48 calories per 8 grams, so (⊡ grams) + 48 = (⊡ calories). 
 

 
Figure 6. Learning obstacle 2 in problem 2 
 

The third learning obstacle is the incorrect generalization of the whole number change factor 
approach (refer to Figure 7). The number of calories and the number of grams is 
multiplied/doubled together, 8 grams x 2 = 16 grams, 48 calories x 2 = 96 calories, so that the 

generalization is (⊡ grams) x 2 = (⊡ calories). 
 

 
Figure 7. Learning obstacle 3 in problem 2 

 
Technique 

The correct technique uses the invariant unit ratio of 6 calories per 1 gram to the relationship 
structure y = mx, such as y = 6x, so that 48 calories = 6 . 8 grams and 96 calories = 6 . 12 grams. 

Generalizations were obtained as shown in the students' answers as shown in Figure 8, namely (⊡ 

gram). 6 = (⊡ calories). 
 

 
Figure 8. Answer to problem 2 
 
Technology 

Analysis of the multiplication structure which provides arguments for the technique used is 
as follows. 
Grams Calories 
   8     48 
  16     96 
   x     6x 
Integer numbers between unit ratio measuring spaces of 6 calories/1 gram are available. The unit 
ratio must be reduced.  
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Theory 

The theory that justifies this technology, namely, proportionality is a linear relationship 
between two covarying quantities according to the model y = mx, where m is the unit rate. All 
corresponding pairs of speeds (x, y) are located on the graph of the line y = mx, which passes 
through the origin (Karplus et al., 1983; Lamon, 2007; Post et al., 1988). 
 
Problem 3 

Task type 3 presented in Table 3 is disproportionately challenging. The context employed is 
a familiar context, specifically running. 

 
Table 3. Praxiology in problem 3 

Task 3 Technique 3 Technology 3 Theory 3 

Mina and Zea 
ran equally fast 
around a track. 
Mina started 
running first. 
When Mina had 
run 9 laps, Zea 
had only run 3 
laps. When Zea 
completed 15 
laps, how many 
laps did Mina 
complete? 

The correct 
technique is that 
Mina has run 6 
more laps than 
Zea, so 15 + 6 = 
21. 

Analysis of the multiplication 
structure which provides 
arguments for the technique 
used is as follows. 
Mina        Zea 
   3     +6    9 
  15    +6    ? 
If the situation is proportional, 
there is a unit ratio and a whole 
number change factor.  This is 
a quantitative distraction that 
can lead to the erroneous use 
of proportional reasoning in 
non-proportional tasks. 

The theory that justifies this 
technology, namely, 
proportionality is a linear 
relationship between two 
covarying quantities according 
to the model y = mx, where m 
is the unit rate. All 
corresponding pairs of speeds 
(x, y) are located on the graph 
of the line y = mx, which 
passes through the origin 
(Karplus et al., 1983; Lamon, 
2007; Post et al., 1988). 

 
Task 

Mina and Zea ran equally fast around a track. Mina started running first. When Mina had 
run 9 laps, Zea had only run 3 laps. When Zea completed 15 laps, how many laps did Mina 
complete? 

 
Learning Obstacles 

Researchers identify students' learning obstacles related to problem 3. The first learning 
obstacle is the use of proportional reasoning in non-proportional situations, as in the student's 
answer shown in Figure 9, namely 15 x (9/3) = 45. 

 

 
Figure 9. Learning obstacle 1 in problem 3 
 
The second learning obstacle is the incorrect use of proportional reasoning into a non-proportional 
situation, as in the student's answer shown in Figure 10, which is 9 x (9/3) = 27. 
 

 
Figure 10. Learning obstacle 2 in problem 3 
 



Journal of Didactic Mathematics 
 

203 

The third learning obstacle is incorrect additive reasoning, Mina has run 9 laps more than Zea, so 
15 + 9 = 24 (Figure 11). 

 

 
Figure 11. Learning obstacle 3 in problem 3 
 
Technique 

The correct technique is that Mina has completed six additional laps compared to Zea, 
resulting in a total of 15 + 6 = 21 laps. This is illustrated in Figure 12. 
 

 
Figure 12. Answers to problem 3 
 
Technology 

The analysis of the multiplication structure that provides an argument for the technique used 
is as follows. 
Mina    Zea 
 3    +6   9 
15   +6    ? 
If the situation is proportional, there are unit ratios and integer change factors. This is a quantitative 
distraction that can bring erroneous use of proportional reasoning into non-proportional tasks. 
 
Theory 

The theory that justifies the technology, namely, proportionality is a linear relationship 
between two quantities that covary according to the model y = mx, where m is the unit rate. All 
corresponding rate pairs (x,y) lie on the graph of the line y = mx, which passes through the origin 
(Karplus et al., 1983; Lamon, 2007; Post et al., 1988). 

 
Problem 4 

Task type 4 is a non-routine task (as indicated in Table 4). Ignorance with notation is 
possible. The previous problem leads students to think about using scalar factors of change in 
rules. Students should be able to cope with this complexity. 

 
Table 4. Praxiology in problem 4 

Task 4 Technique 4 Technology 4 Theory 4 

Diana is ordering 
pizza for a birthday 
party. She estimates 
that 3 pizzas will be 
enough for 10 
people. What is the 
rule that can be 
used to determine 
the number of 
pizzas Diana should 
buy for a certain 
number of people? 

The 
technique 
used is the 
use of an 
invariant unit 
ratio, namely 
3/10, so that 
(# Pizza) = (3 
pizzas per 10 
people) x (# 
People). 

There are no 
integers for the two 
invariant unit ratios 
10/3 and 3/10. The 
unit ratios should be 
determined 
according to the 
context so as to 
solve the problem 
between the size 
spaces. 

The theory justifying the technology is 
that proportionality is a linear relationship 
between two covariant quantities 
according to the model y = mx, where m 
is the unit rate. (Karplus et al., 1983; 
Lamon, 2007; Post et al., 1988). In a 
proportional situation, two invariant unit 
rates exist across the size space. The unit 
rates are reciprocal and define inverse 
functions: y = mx and x = (1/m)y 
(Lamon, 2007; Post et al., 1988, Vergnaud, 
1983). 
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Task 
Diana is ordering pizza for a birthday party. She estimates that 3 pizzas will be enough for 

10 people. What is the rule that can be used to determine the number of pizzas Diana should buy 
for a given number of people? 
 
Learning Obstacle 

The researcher identified students' learning obstacles related to problem 4. The first learning 
obstacle is the use of the wrong unit ratio (refer to Figure 13 and Figure 14). Students use the 
information, 3 pizzas per person as the unit ratio between the given size spaces, which should be 
3 pizzas per 10 people. 

 

 
Figure 13. Learning obstacle 1 in problem 4 
 

 
Figure 14. Learning obstacle 1 in problem 4 
 

The second learning obstacle is the use of other unit ratios that have different contexts of 
use, as depicted in Figure 15. Students utilize the opposite of the unit ratio that should not be used 
in this rule. 

 

 
Figure 15. Learning obstacle 2 in problem 4 

 
The third learning obstacle is the use of change factors that are different in context. The 

scalar factor of change from the previous task is used instead of the invariant unit rate, as depicted 
in Figure 16. 

 

 
Figure 16. Learning obstacle 3 in problem 4 

 
Technique  

The technique used is the use of the invariant unit ratio, which is 3/10, so that (# Pizza) = 
(3 pizzas per 10 people) x (# People). 
 
Technology 

There are no integers for the two invariant unit ratios 10/3 and 3/10. The unit ratio should 
be determined according to the context so as to solve the problem between the size spaces. 
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Theory 
The theory that justifies the technology, namely, proportionality is a linear relationship 

between two covariant quantities according to the model y = mx, where m is the unit rate. (Karplus 
et al., 1983; Lamon, 2007; Post et al., 1988). In a proportional situation, two invariant unit rates 
exist across the size space. The unit rates are reciprocal and define inverse functions: y = mx and 
x = (1/m)y (Lamon, 2007; Post et al., 1988, Vergnaud, 1983). 
 
Problem 5 

The task type in problem 5 is a missing value problem (refer to Table 5). The scientific 
context is the energy used by the air conditioner to operate, the unit rate is not given, and there is 
no integer change factor between the given ratio pairs. 

 
Table 5. Praxiology in problem 5 

Task 5 Technique 5 Technology 5 Theory 5 

There is a proportional 
relationship between 
the time the air 
conditioner operates 
and the amount of 
energy it uses. When 
the air conditioner 
operates for 3.51 
hours, it uses 10.88 
kWh of energy. How 
much energy does the 
air conditioner use 
when it operates for 
4.62 hours? 

The correct 
technique is 
shown in 
Figure 4.34, 
(kWh of 
energy) = 
(10.88 
kWh/3.51 
hours) x (4.62 
hours) = 
14.32 kWh. 

An analysis of the 
multiplication structure 
that provides an 
argument for the 
technique used is as 
follows. 
Hour               kWh 
3.51                10.88 
x(10.88/3.51)  
4.62                14.32 
x(10.88/3.51)  
Use of unit rate 
approach in solving 
proportional problems. 

The theory justifying the technology 
is that proportionality is a linear 
relationship between two covariant 
quantities according to the model y 
= mx, where m is the unit rate. 
(Karplus et al., 1983; Lamon, 2007; 
Post et al., 1988). In a proportional 
situation, two invariant unit rates 
exist across the size space. The unit 
rates are reciprocal and define 
inverse functions: y = mx and x = 
(1/m)y (Lamon, 2007; Post et al., 
1988, Vergnaud, 1983). 

 
Task 

There is a proportional relationship between the time an air conditioner operates and the 
amount of energy it uses. When an air conditioner operates for 3.51 hours, it uses 10.88 kWh of 
energy. How much energy does the air conditioner use when it operates for 4.62 hours? 
 
Learning Obstacle 

The researcher identified students' learning obstacles related to problem 5. The first learning 
obstacle is the wrong unit rate approach. As shown in Figure 17, the student answered (kWh of 
energy) = (10.88 kWh/4.62 hours) x (3.51 hours) = 8.27 kWh. 

 

 
Figure 17. Learning obstacle 1 in problem 5 
 

The second learning obstacle is the wrong additive strategy. The difference in hours, 4.62 - 
3.51 = 1.11 hours, was added to the kWh of energy used when the AC ran for 3.51 hours. Thus, 
10.88 + 1.11 = 11.99 (Figure 18). 
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Figure 18. Learning obstacle 2 in problem 5 

 
The third learning obstacle is that students do not reason quantitatively. The student 

answered that it could not be determined (Figure 19). The quantitative element (decimal number) 
given in this task makes it a problem that students cannot solve. 

 

 
Figure 19. Learning obstacle 3 in problem 5 

 
Techniques 

The right technique looks like the student's answer in Figure 20, (kWh of energy) = (10.88 
kWh/3.51 hours) x (4.62 hours) = 14.32 kWh. 

 
Figure 20. Answers to problem 5 

 
Technology 

The analysis of the multiplication structure that provides argumentation for the technique 
used is as follows. 
Hour                     kWh 
3.51 x(10.88/3.51) 10.88 
4.62 x(10.88/3.51) 14.32 
Use of unit rate approach in solving proportional problems. 
 
Theory 

The theory that justifies the technology, namely, proportionality is a linear relationship 
between two covariant quantities according to the model y = mx, where m is the unit rate. (Karplus 
et al., 1983; Lamon, 2007; Post et al., 1988). In a proportional situation, two invariant unit rates 
exist across the size space. The unit rates are reciprocal and define inverse functions: y = mx and 
x = (1/m)y (Lamon, 2007; Post et al., 1988, Vergnaud, 1983). 

 
This study demonstrates that the learning obstacle instrument, grounded in mathematical 

praxiology, plays a crucial role in facilitating the construction of mathematical knowledge, 
especially in relation to the concepts of proportion, variables, algebraic representations, operations, 
and linear equations. As articulated in epistemology, knowledge is typically understood as justified 
true belief (Audi, 2010), which implies that for a belief to be considered knowledge, it must be 
both true and justified. The process of constructing mathematical knowledge involves not only 
identifying what is true but also how beliefs about mathematical concepts are formed, justified, 
and validated. The findings of this study align with this perspective by highlighting the importance 
of multiple sources of justification, such as perceptual observation, memorial analysis, and 
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introspective awareness, in the development of justified beliefs about mathematical concepts 
(Audi, 2010; Chisholm et al., 1989). 

In the context of praxiology, mathematical tasks do not merely represent abstract concepts 
but also serve as practical tools for engaging students in the epistemic process of justification and 
knowledge construction. By analyzing the tasks and student responses within the learning obstacle 
instrument, this study reveals how students develop their mathematical understanding through 
active engagement with tasks that require them to formulate, validate, and refine their solutions. 
This aligns with the praxiological view that knowledge is constructed through action and reflection, 
emphasizing the role of practical engagement in learning (Stein et al., 2008; Rittle-Johnson et al., 
2019). 
 
Connection to Praxiological Theory 

The praxiological theory underscores the importance of the relationship between practice 
and theory in knowledge construction. In the context of this study, the tasks embedded within the 
learning obstacle instrument provide a framework through which students can engage in 
mathematical actions—solving problems, making predictions, and formulating new ideas. These 
tasks are not simply exercises in computation but opportunities for students to develop their own 
mathematical reasoning, a process that aligns closely with the praxiological concept of knowledge 
as something actively constructed by the learner (Baker, 2019; Swanson, 2019). 

The instrument’s design—incorporating tasks related to proportion, algebraic 
representations, and linear equations—provides a structure within which students can confront 
and overcome learning obstacles. For example, by engaging with tasks that require them to justify 
their reasoning through perceptual, memorial, and introspective awareness, students are 
encouraged to actively construct new mathematical knowledge. This mirrors the praxiological 
framework’s emphasis on student independence and cognitive engagement in learning (Yeager et 
al., 2020). By using the instrument to predict and analyze students’ responses, teachers can identify 
where students may face difficulties, which enables them to provide targeted support and facilitate 
the development of more robust mathematical justifications. 
 
Supporting and Extending Existing Research 

The findings of this study also build on existing research regarding the role of prediction 
and anticipation in teaching practices. As noted by Vale et al. (2019), predicting student responses 
allows teachers to anticipate difficulties and adjust their instructional strategies accordingly. This 
study reinforces that prediction is a key component of effective teaching, particularly in 
mathematics, where the complexity of tasks often challenges students’ conceptual understanding. 
Moreover, the results are consistent with studies by Lewis et al. (2019) and Llinares et al. (2016), 
which emphasize that prediction helps teachers understand how students are likely to engage with 
tasks and which concepts they may struggle with. By incorporating predictions into lesson 
planning, teachers can identify potential misconceptions early, a practice that not only improves 
the quality of classroom discussions but also supports the refinement of student thinking (Yilmaz 
et al., 2019). 

The praxiological approach to task design and anticipation of student responses, as 
demonstrated in this study, provides teachers with the tools to anticipate learning obstacles more 
effectively. For instance, by understanding the likely trajectories of student thinking, teachers can 
select and present solutions in a way that facilitates both individual student reflection and 
collaborative peer discussions. These practices help to create an environment where students can 
compare and validate their own thinking, improving both their problem-solving strategies and 
their understanding of mathematical concepts (Chapin et al., 2009). 

This study contributes to the growing body of literature on mathematical praxiology and its 
application in addressing learning obstacles. The findings underscore the value of using the 
learning obstacle instrument to facilitate the construction of mathematical knowledge through task 
design, student prediction, and anticipation of responses. By embedding praxiological principles 
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into teaching practices, educators can create more effective learning environments that promote 
student independence and deeper conceptual understanding. As this study demonstrates, 
praxiology offers a robust framework for understanding and addressing learning obstacles in 
mathematics, with practical implications for teaching, teacher training, and educational policy. 
Future research should continue to explore the broader applications of this framework and its 
impact on student learning outcomes across various mathematical domains. 

 
CONCLUSIONS 

This study highlights the effectiveness of the learning obstacle instrument in facilitating 
students' construction of mathematical knowledge, particularly in relation to the concept of 
proportion and its connections to variables, algebraic representations, operations, and linear 
equations. By integrating didactic anthropology theory, the study demonstrates how the epistemic 
nature of mathematical tasks can support students in independently using their perceptual and 
memorial potential. Specifically, the instrument allows students to engage with mathematical tasks 
in ways that encourage the formulation, action, and validation of mathematical ideas, fostering 
both conceptual understanding and independent problem-solving abilities. 

From the perspective of didactic anthropology, the instrument provides an opportunity for 
students to move beyond mere procedural learning by engaging in mental actions and modes of 
thinking that lead to new mathematical formulations. This process not only helps students 
internalize mathematical concepts but also empowers them to construct their own mathematical 
objects. The findings suggest that this kind of active, self-directed learning can enhance students' 
mathematical thinking and provide a deeper understanding of the relationships between different 
mathematical concepts. 

For educators, the study offers several practical implications. First, incorporating learning 
obstacle instruments into the classroom can provide valuable insights into student thinking, 
particularly in identifying misconceptions or gaps in understanding. Teachers are encouraged to 
use these tools to anticipate students' solutions to mathematical tasks, which can help in tailoring 
instruction and providing more targeted interventions. In particular, teachers should focus on 
creating opportunities for students to independently explore mathematical concepts, as this 
process fosters deeper conceptual understanding and promotes critical thinking. 

Moreover, it is recommended that teachers incorporate tasks that encourage students to 
engage with the epistemic nature of mathematical problems—tasks that require students to 
formulate, test, and validate their solutions. This approach can be particularly effective in teaching 
complex concepts such as proportion, algebraic reasoning, and linear equations. By allowing 
students to work through tasks that involve both cognitive and procedural challenges, teachers can 
support the development of independent mathematical reasoning. 

For educational policymakers, the findings suggest the importance of integrating tools like 
the learning obstacle instrument into teacher professional development programs. Training 
educators to effectively use such instruments can help them better understand and address learning 
barriers in mathematics. Policymakers should also consider fostering collaboration between 
educators, researchers, and curriculum designers to develop resources that align with the 
praxiological approach and support student-centered learning. 

While this study provides important insights, there are several avenues for future research 
that could further elucidate the findings. Future studies could explore how the learning obstacle 
instrument impacts students’ long-term retention and mastery of mathematical concepts, 
particularly in complex areas such as algebra and proportional reasoning. Additionally, research 
could investigate how the instrument can be adapted for use in diverse educational contexts, 
including different cultural or educational settings, to determine its broader applicability and 
effectiveness. 

Further investigation into the role of the teacher in facilitating the epistemic learning process 
is also needed. Specifically, research could explore how teachers can best scaffold students’ 
independence in formulating and validating mathematical concepts, and what instructional 
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strategies are most effective in supporting this process. Additionally, examining the impact of 
technological tools on students' use of the learning obstacle instrument could provide valuable 
insights into how digital resources might enhance or complement traditional teaching methods. 

In conclusion, this study underscores the potential of the learning obstacle instrument to 
support the construction of mathematical knowledge, particularly in fostering student 
independence and critical thinking. By incorporating these findings into educational practices, 
educators can create more effective learning environments that empower students to engage with 
mathematics at a deeper level. Further research in this area will be critical in refining these 
approaches and expanding their applicability to a broader range of educational contexts. 
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