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Abstract. Keywords:

The objective of this research is to elucidate the impediments encountered by Computational  thinking;
students when attempting to solve Level 5 Minimum Competency Assessment obstacles; minimum
(AKM) problems within the realm of Computational Thinking (CT). competency; case study;
Employing a descriptive qualitative approach with a case study design, the descriptive qualitative

research involved eleventh-grade students from a senior high school. Data
were gathered through Level 5 AKM tests, in-depth interviews, and the analysis
of students’ written responses. These data were subsequently analyzed using
open coding, selective coding, and axial coding. The findings reveal that
students encounter CT obstacles in several critical domains. Specifically, in the
decomposition indicator, students demonstrated difficulties in breaking down
graphical information, selectively extracting data without comprehending the
interrelationships among values. In pattern recognition, students failed to
discern upward-downward trends in harvest data or proportional relationships
in probability tasks, theteby hindering their ability to draw comprehensive
conclusions. Abstraction challenges emerged when students were unable to
discern pertinent information, such as conflating actual frequencies with
theoretical probabilities. In algorithmic thinking, students were unable to
construct systematic steps in calculations or engage in logical reasoning.
Furthermore, logical reasoning and evaluation were deficient, as evidenced by
their inability to assess the plausibility of results or validate their answers.
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INTRODUCTION

The Minimum Competency Assessment (AKM) serves as a pivotal component of the
National Assessment, meticulously crafted by the Ministry of Education, Culture, Research, and
Technology (Kemendikbudristek, 2021). This assessment system aims to establish a more precise
evaluation framework that comprehensively measures students” fundamental competencies. The
development of AKM was necessitated by the imperative to transition from content-oriented
evaluation to competency-based measurement. This shift underscores the importance of assessing
students’ proficiency in comprehending texts, employing logical reasoning, analyzing data, and
solving practical challenges (Pusmenjar, 2020). The AKM’s development draws upon international
assessments such as the Program for International Student Assessment (PISA) and the Trends in
International Mathematics and Science Study (TIMSS), expert consultations, instrument
validation, and the construction of indicators representing literacy and numeracy. These indicators
serve as the foundation for fostering lifelong learning (OECD, 2019).
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The primary objective of the Assessment of Knowledge and Learning (AKM) is to provide
diagnostic information that schools can utilize to enhance instructional practices. AKM is not
intended as a graduation requirement or selection tool but rather as a system-level indicator of
student learning at the school, regional, and national levels (Pusmenjar, 2020). Consequently, AKM
items are designed to assess students’ ability to apply concepts rather than merely recall formulas
(Wijaya et al., 2015). This aligns with the demands of the 21st century, where reasoning, data
literacy, and problem-solving are fundamental competencies (Partnership for 21st Century
Learning, 2019).

Following the development of the framework, the government conducted national
socialization and field trials. AKM was officially implemented in 2021 as part of the National
Assessment, replacing the National Examination (Kemendikbudristek, 2021). Implementation
encompassed stakeholder training, CBT infrastructure preparation, and the development of
teacher support materials (Pusmenjar, 2020). However, many schools initially encountered
challenges such as limited digital facilities, inadequate teacher comprehension, and students’
unfamiliarity with context-rich assessment items (Ahmad, 2022). These systemic changes
introduced a novel assessment experience that many students found challenging. Students were
often unaccustomed to handling lengthy texts, intricate data representations, and realistic scenarios
that demanded higher-order reasoning (Rochmaeni & Wardana, 2023). Teachers also required
adjustments to their instructional strategies to prioritize reasoning and mathematical interpretation
(Bioto et al., 2022). This resulted in a disparity between AKM expectations and students’ actual
competencies.

In the AKM Numeracy Level 5 curriculum, elements of Computational Thinking (CT) are
explicitly integrated. CT encompasses the capacity to break down problems, discern patterns,
identify pertinent information (abstraction), establish systematic procedures (algorithmic thinking),
and derive conclusions based on logical relationships (Shute et al., 2017; Wing, 2006). AKM tasks
necessitate students to interpret contexts, analyze graphs, synthesize multiple data points, and
select efficient solution strategies (Kemdikbud, 2020). Consequently, AKM assessments not only
evaluate numeracy skills but also computational thinking capacities (Angeli & Giannakos, 2020).

Field observations indicate that students frequently encounter challenges when applying
computational thinking (CT) to solve Advanced Knowledge and Mastery Level 5 (AKM Level 5)
tasks. Previous research suggests that students struggle to decompose problems, extract essential
information, and identify underlying patterns, hindering their ability to construct systematic
strategies (Ashiddiqi et al., 2024; Pusat Asesmen Pendidikan, 2024). These difficulties are further
exacerbated by limited teacher knowledge of AKM structure and the absence of explicit instruction
that develops computational thinking frameworks (Rochmaeni & Wardana, 2023). Additionally,
students demonstrate weaknesses in interpreting complex information, comprehending data
representations, and validating solutions—indicating deficits in algorithmic thinking and
debugging (Ashiddiqi et al., 2024). These findings underscore the necessity of analyzing student
difficulties in AKM through a computational thinking framework rather than solely content-
focused analysis (Barr & Stephenson, 2011). CT indicators such as decomposition, abstraction,
pattern recognition, algorithmic thinking, and debugging constitute fundamental cognitive
foundations for interpreting information and selecting appropriate solution approaches (Grover
& Pea, 2013). Consequently, an in-depth examination of students’ computational thinking
obstacles is imperative to design targeted instructional interventions and enhance literacy and
numeracy as the primary objectives of the national assessment.

METHOD

This study employed a qualitative descriptive case study design to analyze students’
computational thinking (CT) obstacles when solving Asesmen Kompetensi Minimum (AKM)
problems. A total of 30 students from SMA Negeri 1 Kota Langsa were selected through purposive
sampling to complete two AKM narrative tasks consisting of four questions released by
PUSMENDIK in the domain of numerical literacy. Each question required multiple responses
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across 11 analytical statements. The research instruments included AKM questions, student
worksheets, a semi-structured interview guide, and a rubric of Computational Thinking indicators
covering Decomposition, Pattern Recognition, Abstraction, Algorithmic Thinking, Data
Representation, Debugging, and Verification (Angeli & Giannakos, 2020; Wing, 2006). As depicted
in Table 1.

Data collection was conducted in three distinct stages: (1) administering the AKM test to all
students under controlled conditions; (2) conducting semi-structured interviews to elucidate
students’ thought processes, challenges, and rationales for their answer selections; and (3)
documenting interviews, field notes, and student worksheets. A select group of participants also
engaged in a straightforward think-aloud session to observe their real-time reasoning. All written
and verbal data were triangulated to enhance the validity of the findings, with the researcher
assuming the primary role as the instrument (Creswell, 2014).

Table 1. CT indicator from AKM problem

Core Question

Implied Sub-Questions

CT Indicator

Evaluating  true—

false statements
from a harvest
graph

Selecting  correct
statements from a
rice-harvest graph

Evaluating a
commentator’s

opinion from a
probability table

Determining the
team most likely
to meet H in the
final

In which month is the smallest
production increase?
Does the order of production
increases (largest — smallest)
match the statement?
Is the production drop in April
greater than in June?

Is the increase in production
from July to August greater than
the previous month?

Is the harvest from March—
August less than 2 of total 2019
harvest?

Is the decrease in April equal to
the decrease in June?

Is August’s harvest four times
December’s?

Who has the highest chance of
becoming champion?

Can Team B meet Team A in the
final?

Do Teams G and H have equal
chances of reaching the final?

If H is guaranteed to reach the
final, which team from Matches
1 & 2 has the greatest chance to
face them?

Pattern Recognition — Identifying patterns of
increase/decrease in the graph.
Decomposition — Breaking the graph into
monthly segments for analysis.

Algorithmic Thinking — Computing month-to-
month changes in sequence.

Abstraction — Selecting only the necessary
months for comparison.

Pattern Recognition — Reading trends from
visual points on the graph.

Data Representation — Converting the graph
into estimated values and comparing totals.

Algorithmic Thinking — Calculating month-to-
month differences.

Decomposition — Taking two distinct data
points to compare.

Verification — Checking the accuracy of
comparisons with the graph.

Pattern Recognition — Identifying the largest
probability value in the column.

Algorithmic Thinking — Following the path:
semifinal — final.

Abstraction — Using only the probability-to-
final column.

Data Representation — Relating table values to
the competition bracket.

Decomposition — Separating early matches —
semifinal — final.

Algorithmic Thinking — Calculating the step-by-
step chance toward the final.

Pattern Recognition — Detecting the highest
probability to the final.

Abstraction — Ignoring irrelevant information
(e.g., probability of becoming champion).

Data analysis in this study was conducted through three primary stages: open coding, axial
coding, and selective coding. These stages adhered to qualitative analysis procedures grounded in
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the principles of grounded theory (Corbin & Strauss, 2008; Creswell, 2014).

In the open coding stage, all data, including students’ written responses, interview
transcripts, and field notes, were repeatedly examined to identify units of meaning such as
misreading information, inability to distinguish relevant data, disorganized solution steps, or the
absence of self-checking processes. Each finding was assigned an initial code without
predetermined categories (Corbin & Strauss, 2008).

In the axial coding stage, these codes were organized into more structured categories based
on Computational Thinking indicators—Decomposition, Pattern Recognition, Abstraction,
Algorithmic Thinking, Data Representation, Debugging, and Verification—allowing patterns to
emerge that connect students’ errors with weaknesses in specific CT processes.

Finally, in the selective coding stage, core categories were selected and integrated to
formulate overarching themes that represent students’ computational thinking obstacles
holistically.

RESULTS AND DISCUSSION

The analysis delved into the students’ Computational Thinking (CT) capabilities by
examining their responses to AKM mathematical literacy problems. The review was conducted by
analyzing how each CT indicator manifested in the students’ problem-solving processes,
encompassing problem decomposition, pattern recognition, abstraction, and algorithmic thinking
in devising solution steps. The results of the categorization based on the words employed in
students’ written answers and interviews are presented in Table 2 as follows.

Table 2. Categories of Students’ Responses Based on Open and Selective Coding

No. Category Freq. Open Coding (Student Expressions) Selective Coding

1 Confusion / Lack of 32 confused, don’t know, don’t understand, Inability to understand the
Understanding unclear, vague, not visible, dizzy, problem (CT: weak
difficult, hard, unfocused, failed, blank abstraction)

2 Misinterpretation  of 21 misread, misinterpret, wrong value, Incorrect data interpretation
Data / Graph wrong graph, wrong pattern, wrong (CT:low data representation)
probability interpretation, reversed

3 Lack of Stepwise 26 random, guess, trial-and-error, assume, Absence  of  systematic

Process /  Non- no steps, unordered, no calculation, no procedures  (CT:  weak
Algorithmic checking, no analysis algorithmic thinking)
4 FErrors in  Reading 18 did notread graph, did not read table, no Failure to process visual
Visual Data connection, no comparison, missing representations (CT: weak
data, cannot find data representation)
5 Inaccuracy / Lack of 12 careless, doubtful, not confident, Lack of validation (CT: weak
Verification inaccurate, unsure evaluation & verification)
6 Errors in Probability 17 wrong probability, big chance? small Weak probability
Concepts chance? don’t understand probability, understanding (CT: weak
miscalculation abstraction & logical
reasoning)
7 Uncertainty /8 maybe, seems like, not sure, illogical Instability in reasoning (CT:
Inconsistent weak logical reasoning)
Reasoning

8 Indication of Pattern 13 increase, decrease, upward pattern, Pattern identification (CT:
Recognition downward pattern, change, relationship, pattern recognition)
compare, order

9 Indication of Data 9 highest, lowest, appropriate, correct, Understanding and

Understanding accurate, consistent, big value, small comparing  values  (CT:
value strong abstraction)
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No. Category Freq. Open Coding (Student Expressions) Selective Coding

10 Analytical Actions / 8 analyze, careful, identify, conclude, Analytical thinking
Good Understanding represent, re-check emergence (CT: algorithmic

thinking)

11 Visual Data 7 graph, diagram, table, matching data, Ability to interpret visual
Representation visual data (CT: data
(Graph/Table) representation)

12 Inability to Conclude 6 no conclusion, inconsistent, mismatch  Failure to create final
conclusion  (CT:  weak
abstraction)

13 Information Overload 5 too much data, complex data, cannot see Difficulty decomposing

/ Key Feature Failure changes information  (CT:  weak
decomposition)

Utilizing the categorized open coding and selective coding results, axial coding was
employed to establish a connection between the various categories of obstacles and the
Computational Thinking (CT) abilities demonstrated in students’ responses. The axial coding
elucidates how students’ statements reflect either deficiencies or strengths in CT components. The

connections between selective coding for each question are delineated in the axial coding presented
in Table 3 below.

Table 3. Axial Coding Based on Students’ Responses to AKM Items
Item Selective Coding Axial Coding

1. Harvest Graph Difficulty interpreting the Students extracted information only from isolated

— Reading Data  graph segments of the graph without understanding the
relationships among values. They failed to connect axes,
trends, and comparisons. Errors stemmed from weak
decomposition  and ~ pootr  data  representation.  Their
understanding of the graph was partial, leading to
inaccurate interpretations and showing that foundational
CT skills were not yet formed.

2. Harvest Graph Inability to derive Students tended to draw conclusions based on a single data
- Drawing conclusions from the graph point, ignoring overall trends of increase or decrease. Weak
Conclusions pattern recognition prevented them from constructing logical

inferences from the available data. Their failure to integrate
information across the entire graph resulted in incomplete
conclusions, indicating underdeveloped CT skills.

3. Basic Insufficient understanding Students struggled to construct sample spaces, confused
Probability — of probability concepts actual frequencies with theoretical probabilities, and used
Determining incorrect numerical reasoning. Weaknesses in abstraction
Probabilities and modeling prevented them from translating random

situations into mathematical form. This reflects the absence
of a systematic CT structure in their reasoning.

4. Probability — Inaccurate probability Students were unable to compate probabilities correctly
Comparing reasoning due to misunderstandings of event—likelihood relationships
Probabilities and frequent errors in applying numerator—denominator

logic. Weak algorithmic thinking and poor evaluation skills
resulted in failure to assess the plausibility of their answers.
These issues highlight insufficient CT competence in
probabilistic reasoning.

Through this categorization, it is evident that the majority of students’ difficulties are
centered on their inability to comprehend problems, errors in interpreting visual data, and the



202 Siregar et al.

absence of systematic steps in problem-solving. Conversely, some categories indicate the presence
of pattern recognition skills and appropriate data processing abilities. The weaknesses observed in
solving graph and probability problems do not appear in isolation but are interrelated, forming a
consistent pattern of cognitive obstacles. The findings reveal that students still struggle with
decomposition, abstraction, pattern recognition, data representation, algorithmic thinking, and
verification when processing information and drawing conclusions. The detailed weaknesses faced
by students are described in each category as follows:

Decomposition (Problem Decomposition)

The findings reveal that a significant portion of students encounter challenges in
decomposing information into simpler components when confronted with graph and probability-
based problems. In graph-related tasks, students demonstrate difficulties in identifying crucial
elements such as annual crop values, trends of increase or decrease, and comparisons between data
points. Conversely, in probability problems, students fail to systematically break down sample
spaces, potential events, or calculation steps, resulting in unorganized problem-solving. Open
coding revealed words such as “confused,” “don’t know,” “difficult,” “misread graph,” and “no
steps,” indicating students’ unpreparedness for step-by-step problem-solving. Selective coding
corroborated that these difficulties reflect an inability to deconstruct information structures, while
axial coding demonstrated that most students process information globally, overlooking significant
details. This lack of decomposition emerges as a substantial impediment to subsequent cognitive
processing stages, including pattern recognition, abstraction, and algorithmic thinking.

The deficiency in decomposition hinders students from developing a systematic problem-
solving strategy, often leading to inaccurate responses. These findings align with the notion that
decomposition is a fundamental component of cognitive processing (Shute et al., 2017; Wing,
2000). Students frequently perceive graphs as mere visual representations rather than data analysis
tools (Sari et al., 2023). Conversely, suggests that decomposition can be enhanced when students
receive scaffolding or step-by-step instructions, emphasizing the significant influence of the
learning context on this ability (Rahmawati et al., 2024). Consequently, the development of
decomposition skills necessitates instructional strategies that facilitate stepwise analysis and explicit
identification of essential elements.

Pattern Recognition

Students’ ability to discern patterns remains severely constrained in both graph and
probability-based tasks. In graph-related tasks, a significant portion of students fail to identify
upward and downward trends over time and overlook relationships between data points. In
probability-based tasks, they encounter difficulties in detecting patterns that connect sample
spaces, events, and probabilities, including proportionality patterns that underpin probability
calculations. Open coding revealed terms such as “cannot see pattern,” “no comparison,” “wrong
trend,” and “cannot find connection,” while words like “up,” “down,” or “change” were rarely
encountered. Selective coding confirmed students’ inability to recognize patterns visually or
numerically, whereas axial coding demonstrated that this inability leads to erroneous inferences
and illogical conclusions. A limited pattern recognition ability directly impacts the construction of
mental representations and the generalization of information derived from data.

The restricted pattern recognition capacity causes students to struggle with connecting data,
observing changes, and forming generalizations from graphs and probability problems.
Consequently, their responses tend to be random, inconsistent, and devoid of data-based
reasoning. The absence of this ability also affects subsequent cognitive tasks, such as algorithmic
thinking and evaluation, as students lack a logical foundation to guide the subsequent steps.
Without pattern recognition skills, students are susceptible to making flawed generalizations and
repeating errors. This condition indicates that pattern recognition is not merely an additional skill
but a fundamental foundation for mathematical information processing.

These findings align with other research that emphasizes the essential role of pattern
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recognition in cognitive tasks (Lye & Koh, 2014; Shute et al., 2017). Additionally, research has
shown that misconceptions in graphs and probability frequently arise from inadequate basic
pattern recognition (Sari et al, 2023). However, research has demonstrated that visual
manipulatives and interactive media can enhance pattern recognition, highlighting the significance
of context-based instructional strategies (Pratiwi & Nashiroh, 2025). Therefore, pedagogical
interventions that explicitly focus on identifying patterns are crucial for enhancing students’
cognitive tasks (CT) skills.

Abstraction

Students encounter challenges in discerning pertinent information while disregarding
extraneous details. In graphical representations, their attention is drawn to striking numerical
values rather than general patterns that can serve as the foundation for conclusions. In probability-
based problems, they fail to comprehend abstract concepts such as proportions, sample spaces,
and theoretical probabilities, thereby hindering their ability to distill information to its core essence.
Through open coding, words like vague, unclear, confused, and excessive data were identified
during sorting, while selective coding highlighted students’ inability to perform conceptual
simplification. Axial coding further emphasized that this failure in abstraction results in inaccurate
mental models, leading to misguided and misconception-filled problem-solving.

The absence of abstraction has a detrimental impact on subsequent cognitive processing
stages, including algorithmic thinking and evaluation, as students lack a clear framework for
sequencing logical steps. This causes students to become easily distracted by irrelevant
information, renders problem-solving processes unfocused, and results in incorrect answers.
Furthermore, the failure to simplify information diminishes their capacity to construct accurate
mental models essential for prediction, generalization, or mathematical decision-making.

These findings are consistent with research that underscores the significant influence of
experience in selecting key features from data on abstraction ability (Lye & Koh, 2014; Wing,
2000). It is evident that explicit, context-based, and visual practice can substantially enhance this
skill. Consequently, developing abstraction skills necessitates systematic pedagogical interventions
that facilitate students’ focus on essential elements and the construction of accurate mental models,
thereby enabling subsequent cognitive processing stages to be executed more effectively (Grover
& Pea, 2013).

Algorithmic Thinking

Most students respond to tasks based on guesswork, trial-and-error, or personal logic
without adhering to systematic steps. In graph tasks, students fail to analyze data sequentially, and
in probability tasks, they neglect to document calculation steps, leading to invalid results. Open
coding revealed words such as random, trial-and-error, unordered, did not check, and did not
calculate, indicating a lack of procedural thinking patterns. Selective coding categorized these
findings as an inability to construct sequential processes, while axial coding emphasized that the
absence of systematic thinking results in illogical and difficult-to-justify answers. This condition
impedes students’ ability to solve problems accurately and systematically.

These findings are supported by other research, which demonstrated that secondary school
students often fail to apply algorithmic steps without explicit practice (Grover & Pea, 2013).
Problem-solving exercises can significantly enhance algorithmic thinking (Lye & Koh, 2014).
Although algorithmic thinking is not always necessary in non-computational tasks, it remains
crucial for producing valid and consistent answers in AKM problems (Ashiddiqi et al., 2024).
Therefore, developing algorithmic thinking necessitates structured practice and explicit instruction
to enable students to follow logical problem-solving steps.

Data Representation
Students encounter difficulties in interpreting relationships between variables in graphs,
comprehending trends, and comparing values across data points. In probability problems, they
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also fail to accurately represent sample spaces and events. Open coding revealed terms such as
misread graph, did not see table, did not compare values, and missing table, indicating their inability
to transform visual representations into accurate mental representations. Selective coding
confirmed that this challenge reflects a fundamental issue in mapping data into numerical or
symbolic formats. Axial coding further emphasized that incorrect initial representation impacts the
entire reasoning process, resulting in inaccurate final answers.

Students’ data representation skills are inadequate across graphs, tables, and probabilistic
tasks, leading to imprecise data interpretation and erroneous decisions. This difficulty also affects
other cognitive-technical (CT) aspects, as students are unable to construct accurate mental models,
structure algorithmic steps, or evaluate their answers logically. These obstacles suggest that data
representation is not merely an additional skill but a foundational ability that influences the entire
computational thinking process. Emphasizing that graph interpretation and visual data reading are
among students’ primary weaknesses (Sari et al., 2023). Data representation can be enhanced
through multimodal representation, such as combining tables, diagrams, and graphs (Pusat
Asesmen Pendidikan, 2024). Therefore, instructional strategies that incorporate various visual
representations and intensive practice are essential to assist students in comprehending data and
drawing valid conclusions.

Evalnation (1ogical V erification)

Students frequently overlook checks, disregard the plausibility of answers, and accept final
results without verification. In both graph and probability tasks, students fail to reflect on their
results, allowing minor errors to persist into the final answers. Open coding revealed words such
as unsure, hesitant, did not check, and illogical, indicating low self-evaluation in problem-solving.
Selective coding highlighted that evaluation is one of the weakest aspects of students’ critical
thinking (CT), while axial coding demonstrated that without evaluation, early mistakes remain
undetected and final answers remain incorrect.

Students’ evaluation ability is extremely low, so reflective behavior necessary for accurate
problem-solving does not emerge. This directly affects their inability to produce valid answers,
even when initial data is available. These findings are consistent with Polya (1945) and Schoenfeld
(1985), who showed that evaluation is the most frequently neglected step in students’ problem-
solving. Evaluative ability develops through metacognitive reflection practice (Ashiddiqi et al.,
2024). Although some studies argue that evaluation is not always required for simple tasks, these
findings confirm that, even in abstract mathematical problems (AKM), evaluation remains a crucial
component that cannot be ignored.

CONCLUSIONS

Students’ Computational Thinking (CT) skills remain low across all indicators, particularly
in decomposition, pattern recognition, abstraction, algorithmic thinking, and evaluation. This
results in partial data reading, misinterpretation of graphs, and failure to construct accurate
probability representations. Analysis of students’ responses to AKM questions using Grounded
Theory revealed recurring cognitive obstacles: open coding highlighted frequent expressions such
as confused, unsure, misread graph, and no steps, indicating difficulties in systematic information
processing. Selective coding categorized these into key CT components, revealing struggles in
problem decomposition, pattern recognition, concept simplification, algorithmic step
organization, and answer verification. Axial coding revealed interrelated weaknesses, where errors
in early stages propagated to later problem-solving steps. The study has limitations, including a
small sample size, only two contexts (crop graphs and probability), and qualitative data derived
solely from written responses without in-depth interviews. These limitations may limit the
interpretation of students’ overall thinking processes. Nevertheless, the findings suggest the need
for instructional interventions that explicitly integrate CT into mathematics content, utilize
scaffolding to support data interpretation, and employ richer assessment instruments to
comprehensively capture students’ cognitive processes. Grounded Theory can provide valuable
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insights into the sequence and interconnection of CT difficulties, informing targeted pedagogical
strategies.
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