Penentuan Sistem Pusat Pelayanan Perkotaan Berdasarkan Data Point of Interest di Kota Pangkalpinang

Hadi Fitriansyah(1), Dwi Rizka Zulkia(2),


(1) Universitas Bangka Belitung
(2) Universitas Bangka Belitung

Abstract


An interconnected city service system exists in urban areas. A good urban space structure should be able to encourage sustainable development for the people and the countryside, as a process of changing the use of dynamic urban space. The high service requirements of the central area of Pangkalpinang City are not offset by the availability of adequate urban facilities. The purpose of this study is to describe the service center system in Pangkalpinang City. The method used in this research with kernel density analysis uses POI (Point of Interest) data related to social, cultural, economic, and/or public administration. Analysis results showed that the Padi Market Area is still a potential service center in Pangkalpinang City, with the main character of trade and services. This is in line with the 2011-2030 RTRW of Pangkalpinan City that makes the Pedi Market area the service center of Pangcalpinang Town. Several areas have the potential to develop functions and roles as a City Service Subcenter. The results of this analysis are expected to provide recommendations to policymakers in drawing up the structure of urban spaces in urban spatial documents.

Keywords


Kernel Density Estimation; Point of Interest; Urban Functional

Full Text:

PDF

References


Dhika, V., Dan, N., & Brotosunaryo, P. M. (2012). Pengaruh Perkembangan Aktivitas Ekonomi Terhadap Struktur Ruang Kota Di Swp Iii Kabupaten Gresik. Jurnal Teknik PWK, 1(1), 76–86.

Firmansyah, R. A., Hariyanto, & Indrayati, A. (2016). Dinamika Sistem Kota-Kota Dan Pemilihan Alternatif Pusat Pertumbuhan Baru di Kota Semarang. Geo Image, 5(2), 46–51.

Gao, S., Janowicz, K., & Couclelis, H. (2017). Extracting urban functional regions from points of interest and human activities on location-based social networks. Transactions in GIS, 21(3), 446–467. https://doi.org/10.1111/tgis.12289

Hu, Liu, Jia, & Jin. (2019). Characterization of Territorial Spatial Agglomeration Based on POI Data: A Case Study of Ningbo City, China. Sustainability, 11(18), 5083. https://doi.org/10.3390/su11185083

Hu, Y., & Han, Y. (2019). Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability, 11(5), 1385. https://doi.org/10.3390/su11051385

King, T. L., Bentley, R. J., Thornton, L. E., & Kavanagh, A. M. (2016). Using kernel density estimation to understand the influence of neighbourhood destinations on BMI. BMJ Open, 6(2), e008878. https://doi.org/10.1136/bmjopen-2015-008878

Lee, K.-S., You, S. Y., Eom, J. K., Song, J., & Min, J. H. (2018). Urban spatiotemporal analysis using mobile phone data: Case study of medium- and large-sized Korean cities. Habitat International, 73, 6–15. https://doi.org/10.1016/j.habitatint.2017.12.010

Lou, G., Chen, Q., He, K., Zhou, Y., & Shi, Z. (2019). Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou. Remote Sensing, 11(15), 1821. https://doi.org/10.3390/rs11151821

Lu, C., Pang, M., Zhang, Y., Li, H., Lu, C., Tang, X., & Cheng, W. (2020). Mapping Urban Spatial Structure Based on POI (Point of Interest) Data: A Case Study of the Central City of Lanzhou, China. ISPRS International Journal of Geo-Information, 9(2), 92. https://doi.org/10.3390/ijgi9020092

Miao, R., Wang, Y., & Li, S. (2021). Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability, 13(2), 647. https://doi.org/10.3390/su13020647

Oliveira, V., & Pinho, P. (2010). Evaluation in Urban Planning: Advances and Prospects. Journal of Planning Literature, 24(4), 343–361. https://doi.org/10.1177/0885412210364589

Picard, P. M., & Zenou, Y. (2018). Urban spatial structure, employment and social ties. Journal of Urban Economics, 104, 77–93. https://doi.org/10.1016/j.jue.2018.01.004

Rendra, M. I., & Fitriansyah, H. (2020). Analisis Pusat Pelayanan Dan Interaksi Ruang Di Kabupaten Bojonegoro. Jurnal Geografi, 9, 73–82.

Rohmaningsih, E., Sholichin, M., & Haribowo, R. (2017). Kajian Pengembangan Sistem Penyediaan Air Bersih Pada Daerah Rawan Air Di Desa Sumbersih. Jurnal Teknik Pengairan, 8(1), 48–59.

Setiawan, B., & Rudiarto, I. (2016). Kajian Perubahan Penggunaan Lahan dan Struktur Ruang Kota Bima. JURNAL PEMBANGUNAN WILAYAH & KOTA, 11(4), 154. https://doi.org/10.14710/pwk.v12i2.12892

Setyono, D., Hariyani, S., & Haryani, B. (2019). IDENTIFIKASI BENTUK STRUKTUR RUANG KOTA BATUIDENTIFIKASI BENTUK STRUKTUR RUANG KOTA BATU. Tata Kota Dan Daerah, 11(2), 85–92. https://doi.org/10.21776/ub.takoda.2019.011.02.5

Shi, Y., & Yang, J. (2018). Application of Big Data in the Study of Urban Spatial Structures (pp. 255–272). https://doi.org/10.1007/978-3-319-51929-6_14

Utari, M. E. S. (2015). ANALISIS SISTEM PUSAT PELAYANAN PERMUKIMAN DI KOTA YOGYAKARTA. JEJAK, 8(1). https://doi.org/10.15294/jejak.v8i1.3856

Wang, J., Gao, C., Wang, M., & Zhang, Y. (2023). Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China. Sustainability, 15(8), 6505. https://doi.org/10.3390/su15086505

Wang, Z., Ma, D., Sun, D., & Zhang, J. (2021). Identification and analysis of urban functional area in Hangzhou based on OSM and POI data. PLOS ONE, 16(5), e0251988. https://doi.org/10.1371/journal.pone.0251988

Xie, Z., & Yan, J. (2013). Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach. Journal of Transport Geography, 31, 64–71. https://doi.org/10.1016/j.jtrangeo.2013.05.009

Yang, J., Zhu, J., Sun, Y., & Zhao, J. (2019). Delimitating Urban Commercial Central Districts by Combining Kernel Density Estimation and Road Intersections: A Case Study in Nanjing City, China. ISPRS International Journal of Geo-Information, 8(2), 93. https://doi.org/10.3390/ijgi8020093

Zhang, J., He, X., & Yuan, X.-D. (2020). Research on the relationship between Urban economic development level and urban spatial structure—A case study of two Chinese cities. PLOS ONE, 15(7), e0235858. https://doi.org/10.1371/journal.pone.0235858

Zhang, Y., Li, Q., Tu, W., Mai, K., Yao, Y., & Chen, Y. (2019). Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Computers, Environment and Urban Systems, 78, 101374. https://doi.org/10.1016/j.compenvurbsys.2019.101374




DOI: https://doi.org/10.34007/jehss.v6i2.1951

Refbacks



Copyright (c) 2023 Journal of Education, Humaniora and Social Sciences (JEHSS)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Education, Humaniora and Social Sciences (JEHSS)

Publisher: Mahesa Research Center

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International Public License