The teaching-learning process of the continuity of real variable functions: A literature review

G. Elizabeth Maxil-Cardoso(1), Felipe Castro-Fernández(2), José Antonio Juárez-Lopez(3),


(1) Meritorious Autonomous University of Puebla, Puebla, Mexico, 72592
(2) Meritorious Autonomous University of Puebla, Puebla, Mexico, 72592
(3) Meritorious Autonomous University of Puebla, Puebla, Mexico, 72592

Abstract


This article´s objective is to present the current state of research on the teaching-learning process of continuity of real variable functions. To achieve this, a documentary research design with a qualitative approach and a descriptive depth level was adopted. The instruments for data collection and analysis included a search log, a bibliographic matrix, and a synthesis matrix, created using Excel software. The technique used for the literature review was qualitative content analysis, based on deductive analytical categories: objective, theoretical framework, research method, and conclusions. Advanced searches were conducted on Google Scholar, on Scopus and Web of Science and out of the total results found, 13 relevant articles published during the period 2020-2023 were selected. Among the main findings, the use of a variety of theoretical frameworks in the foundation of the analysed studies was identified, such as the theory of semiotic representations, the MTSK model, the TPACK, and the conceptual contributions of Tall and Vinner, among others. Additionally, a growing interest in the use of technological tools, such as GeoGebra, to enhance the teaching and learning process of mathematics in general, and the continuity functions in particular. Although its limitations, it was identified that this software can be used as a tool for visualization, construction, representation and communication of mathematical knowledge.

Keywords


Continuity of functions; real variable; teaching; learning; literature review

Full Text:

PDF

References


Aparicio, E., & Cantoral, R. (2007). La formazione della nozione di continuita puntuale presso gli studenti dell'universita. Un approccio socioepistemologico. La Matematica e la sua Didattica, 163-196. https://www.researchgate.net/profile/RicardoCantoral/publication/262257236

Arias, F. G. (2012). El proyecto de investigación. Introducción a la metodología científica (6ª. Ed.). Episteme.

Branchetti, L., Calza, G., Martani, S., & Saracco, A. (2020). Continuity of real functions in high school: a teaching sequence based on limits and topology. INDRUM, 72-81. https://hal.science/hal-03113955/

Budak, K. S., & Akcay, Z. O. (2022). Pre-service teachers understanding of continuity. International Electronic Journal of Mathematics Education, 17(2), em0674. https://doi.org/10.29333/iejme/11669

Crespo, C. (2004). El concepto de continuidad y sus obstáculos epistemológicos. Acta Latinoamericana de Matemática Educativa, 17, 39-44. https://funes.uniandes.edu.co/funes-documentos/el-concepto-de-continuidad-y-sus-obstaculos-epistemologicos/

Delgado, M. (2013). Un problema con la concepción de la continuidad de una función. El cálculo y su enseñanza, 4(1), 21-34. https://doi.org/10.61174/recacym.v4i1.155

Díaz, C. & Navarro, P. (2007). Análisis de contenido. En J. M. Delgado y J. Gutiérrez. (Eds.) Métodos y técnicas cualitativas de investigación en ciencias sociales. (pp. 177-224). Síntesis.

Fernández, V. N., Salazar, J. V. F., Pachas, J. L. V., & Vara, T. N. P. (2023). Tecnología digital en tareas sobre continuidad de una función en un punto: Una mirada desde el Espacio de Trabajo Matemático. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2023(E56), 209-217. https://www.risti.xyz/issues/ristie56.pdf

Ferrini-Mundy, J., & Graham, K. (1994). Research in calculus learning: Understanding of limits, derivatives, and integrals. MAA notes, 31-46.

Fonseca, V. G. D., & Henriques, A. C. C. B. (2020). Learning with understanding the continuity concept: A teaching experiment with Brazilian pre-service mathematics teachers. International Electronic Journal of Mathematics Education, 15(3). https://doi.org/10.29333/iejme/8462

Gómez, M., Galeano, C., Jaramillo, D. A. (2015). El estado del arte: Una metodología de investigación. Revista Colombiana de Ciencias Sociales, 6(2), 423-442. https://www.redalyc.org/pdf/4978/497856275012.pdf

Hanke, E. & Schäfer, I (2017). Students’ view of continuity: An empirical analysis of mental images and their usage. In T. Dooley & G. Gueudet (Eds.), Proceedings of CERME 10 (pp. 2081–2088). DCU Institute of Education and ERME. https://hal.science/hal-01941355v1

Hernández, R., Fernández, C., & Baptista, M. (2014). Metodología de la investigación (6ª. Ed.). McGraw-Hill.

Hernandez-Suarez, C. A., Prada-Núñez, R., & Ramírez-Leal, P. (2017). Obstáculos epistemológicos sobre los conceptos de límite y continuidad en cursos de cálculo diferencial en programas de ingeniería. Revista Perspectivas, 2(2), 73–83. https://doi.org/10.22463/25909215.1316

Hitt, F. (2003). Dificultades en el aprendizaje del cálculo. In XI Meeting of Middle-Higher Level Mathematics Teachers, Michoacan University San Nicolás de Hidalgo, Morelia (Mexico).

Kim, K. M., & Md-Ali, R. (2017). GeoGebra: Towards realizing 21st century learning in Mathematics Education. Malaysian Journal of Learning and Instruction, Special Issue, 93–115. https://doi.org/10.32890/mjli.2017.7799

Laderas, E., Huauya, P., Coaquira, V. A., & Quispe, A. (2022). Tecnologías de información y comunicación como innovación pedagógica y tecnológica en el aprendizaje del cálculo I, en estudiantes de la escuela de Ingeniería Civil, Universidad Nacional de San Cristóbal de Huamanga, en contexto COVID-19. Horizonte de la ciencia, 12(23), 146-159. https://doi.org/10.26490/uncp.horizonteciencia.2022.23.1470

Lan, X., & Zhou, Y. (2020). Teaching derivative concept using 6 questions cognitive model. Journal of Didactic Mathematics, 1(3), 127-137. https://doi.org/10.34007/jdm.v1i3.371

Morales, A., & Damián, A. (2020). Didactic strategy to introduce the concept of punctual continuity with pre-university students. International Journal of Research in Education Methodology, 11, 7-21. https://doi.org/10.24297/ijrem.v11i.8625

Morales, A., Damián, A., & Estrada, M. (2021). Alternativa didáctica para introducir el concepto de continuidad puntual en profesores del preuniversitario. XI Simposio de Matemática y Educación Matemática y el X Congreso Internacional de Matemática asistida por Computador, 8(2), 52-59. https://www.researchgate.net/publication/362456646

Munyaruhengeri, J. P. A., Umugiraneza, O., Ndagijimana, J. B., & Hakizimana, T. (2023). Potentials and limitations of GeoGebra in teaching and learning limits and continuity of functions at selected senior four Rwandan secondary schools. Cogent Education, 10(2), https://doi.org/10.1080/2331186X.2023.2238469

Prieto, J. (2016). GeoGebra en diferentes escenarios de actuación. Conocimiento Libre Y Licenciamiento (CLIC), (14). https://convite.cenditel.gob.ve/publicaciones/revistaclic/article/view/866

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021). Exploring university Mexican students¿ Quality of intra-mathematical connections when solving tasks about derivative concept. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), em2006. https://doi.org/10.29333/ejmste/11160

Safarini, D. T. L. S., Darhim, D., & Juandi, D. (2023). Students’ proceptual thinking outcomes in learning differentiability using desmos classroom activities based on the three worlds of mathematics framework. Mathematics Teaching-Research Journal, 15(3), pp. 136–160. https://files.eric.ed.gov/fulltext/EJ1408235.pdf

SEP (Secretaría de Educación Pública). (2018). Programa de estudios del componente básico del marco curricular común de la educación media superior. https://educacionmediasuperior.sep.gob.mx/work/models/sems/Resource/12615/5/images/BT_Calculo_Diferencial.pdf

Sulastri, R. (2023). Studi didactic transposition: Eksplorasi knowledge to be taught pada limit fungsi. Journal of Didactic Mathematics, 4(2), 106-117. https://doi.org/10.34007/jdm.v4i2.1903

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. http://dx.doi.org/10.1007/BF00305619

Thurston, W. P. (1995). On proof and progress in mathematics. For the Learning of Mathematics, 15(1), 29–37. http://www.jstor.org/stable/40248168

Tong, D. H., Uyen, B. P., Kieu, H. T. D., & Ngan, L. K. (2021). The effectiveness of using GeoGebra software in mathematics classrooms: A case study of teaching continuous functions in high schools. Journal of Hunan University Natural Sciences, 48(9), 256-268. http://jonuns.com/index.php/journal/article/viewFile/742/739

Trujillo, J. A., Vera, C. L., & Saraza, D. F. (2019). Ingeniería didáctica como recurso metodológico para el aprendizaje de los conceptos de límite y continuidad. Revista Perspectivas, 4(1), 39–47. https://doi.org/10.22463/25909215.1758

Valongo, A., & Felgueiras, M. (2022). Constructing the continuity concept. WSEAS Transactions on Advances in Engineering Education. 109-120. http://dx.doi.org/10.37394/232010.2022.19.11

Vargas, H. A., & Murcia, E. (2022). Impacto de la implementación de la herramienta transmedia Pixton en el desarrollo de la comprensión del concepto de continuidad de los estudiantes de grado 12 del Liceo Taller San Miguel. Universidad Católica de Pereira. http://hdl.handle.net/10785/9648

Villa-Ochoa, J. A., González-Gómez, D., & Carmona-Mesa, J. A. (2018). Modelación y tecnología en el estudio de la tasa de variación instantánea de matemáticas. Formación Universitaria, 11(2), 25-34. https://doi.org/10.4067/S0718-50062018000200025

Wald, N., & Daniel, B. K. (2020). Enhancing students’ engagement with abstract ideas through conceptual and theoretical frameworks. Innovations in Education and Teaching International, 57(4), 496-505. https://doi-org.proxydgb.buap.mx/10.1080/14703297.2019.1692055

Wassie, Y. A., & Zergaw, G. A. (2019). Some of the potential affordances, challenges and limitations of using GeoGebra in mathematics education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8), em1734. https://doi.org/10.29333/ejmste/108436

Weinhandl, R., Lavicza, Z., Hohenwarter, M. & Schallert, S. (2020). Enhancing flipped mathematics education by utilising GeoGebra. International Journal of Education in Mathematics, Science and Technology (IJEMST), 8(1), 1-15.

Yohannes, A., & Chen, H. L. (2021). GeoGebra in mathematics education: A systematic review of journal articles published from 2010 to 2020. Interactive Learning Environments, 31(9), 5682–5697. https://doi.org/10.1080/10494820.2021.2016861

Zengin, Y. (2018). Incorporating the dynamic mathematics software GeoGebra into a history of mathematics course. International Journal of Mathematical Education in Science and Technology, 49(7), 1083–1098. https://doi.org/10.1080/0020739X.2018.1431850




DOI: https://doi.org/10.34007/jdm.v5i3.2329

Refbacks

  • There are currently no refbacks.


Journal of Didactic Mathematics

Mahesa Research Center