Computational thinking obstacles in students’ responses to AKM level 5 problems

Ginda Maruli Andi Siregar(1), Hidayat Hidayat(2), Sukmawarti Sukmawarti(3), Aya Shofia Maulida(4),


(1) Universitas Samudra, Langsa, Aceh, Indonesia, 24416
(2) Universitas Muslim Nusantara Al-Washliyah, Medan, North Sumatra, Indonesia, 20147
(3) Universitas Muslim Nusantara Al-Washliyah, Medan, North Sumatra, Indonesia, 20147
(4) Universitas Pendidikan Indonesia, Bandung, West Java, Indonesia, 40154

Abstract


The objective of this research is to elucidate the impediments encountered by students when attempting to solve Level 5 Minimum Competency Assessment (AKM) problems within the realm of Computational Thinking (CT). Employing a descriptive qualitative approach with a case study design, the research involved eleventh-grade students from a senior high school. Data were gathered through Level 5 AKM tests, in-depth interviews, and the analysis of students’ written responses. These data were subsequently analyzed using open coding, selective coding, and axial coding. The findings reveal that students encounter CT obstacles in several critical domains. Specifically, in the decomposition indicator, students demonstrated difficulties in breaking down graphical information, selectively extracting data without comprehending the interrelationships among values. In pattern recognition, students failed to discern upward-downward trends in harvest data or proportional relationships in probability tasks, thereby hindering their ability to draw comprehensive conclusions. Abstraction challenges emerged when students were unable to discern pertinent information, such as conflating actual frequencies with theoretical probabilities. In algorithmic thinking, students were unable to construct systematic steps in calculations or engage in logical reasoning. Furthermore, logical reasoning and evaluation were deficient, as evidenced by their inability to assess the plausibility of results or validate their answers.

Keywords


Computational thinking; obstacles; minimum competency; case study; descriptive qualitative

Full Text:

PDF

References


Ahmad, A. (2022). Pemantauan pelaksanaan asesmen nasional berbasis komputer (ANBK) sekolah dasar binaan Kecamatan Kopang Kabupaten Lombok Tengah tahun 2021. Jurnal Paedagogy, 9(1), 34. https://doi.org/10.33394/jp.v9i1.4619

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges. Computers in Human Behavior, 105, 106185. https://doi.org/10.1016/j.chb.2019.106185

Ashiddiqi, H., Sukoriyanto, S., & Hidayah, I. N. (2024). Kesalahan peserta didik dalam menyelesaikan soal AKM pada level kognitif reasoning berdasarkan teori Newman. FIBONACCI: Jurnal Pendidikan Matematika dan Matematika, 10(2), 247–260. https://doi.org/10.24853/fbc.10.2.247-260

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Bioto, A. R., Suking, A., & Zulystiawati, Z. (2022). Analisis kesiapan guru dalam menghadapi asesmen nasional. Student Journal of Educational Management, 31–45. https://doi.org/10.37411/sjem.v2i1.1050

Corbin, J. M., & Strauss, A. L. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd ed.). Sage Publications.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Kementerian Pendidikan dan Kebudayaan. (2020). AKM dan implikasinya pada pembelajaran. Pusat Asesmen dan Pembelajaran. https://pusmendik.kemdikbud.go.id/an/file_akm2_202101_1.pdf

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. (2021). Asesmen nasional: Lembar tanya jawab. Pusat Asesmen dan Pembelajaran, Badan Penelitian dan Pengembangan dan Perbukuan. https://pusmendik.kemdikbud.go.id/an/file_akm_202101_1.pdf

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K–12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012

OECD. (2019). PISA 2018 assessment and analytical framework. OECD Publishing. https://doi.org/10.1787/b25efab8-en

Partnership for 21st Century Learning. (2019). Framework for 21st century learning definitions. Battelle for Kids. https://www.battelleforkids.org/networks/p21

Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.

Pratiwi, E., & Nashiroh, P. K. (2025). Meta-analysis pengaruh media interaktif terhadap kemampuan berpikir komputasional dalam pembelajaran pemrograman. Jurnal Riset dan Inovasi Pembelajaran, 5(2), 692–710. https://doi.org/10.51574/jrip.v5i2.3705

Pusat Asesmen Pendidikan. (2024). Profil satuan pendidikan dengan capaian AKM tinggi pada jenjang SMA/SMK/MA/sederajat: Dokumen rekomendasi bahan kebijakan hasil asesmen nasional tahun 2023. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.

Pusat Penilaian Pendidikan. (2020). Desain pengembangan soal asesmen kompetensi minimum. Kementerian Pendidikan dan Kebudayaan. https://pusmendik.kemdikbud.go.id/an/page/asesmen_kompetensi_minimum

Rahmawati, S. N., Fauzi, A., & Supurwoko, S. (2024). Computational-thinking based learning activities for physics in Indonesian new curriculum through a student worksheet development. JIPF (Jurnal Ilmu Pendidikan Fisika), 9(3), 426. https://doi.org/10.26737/jipf.v9i3.4807

Rochmaeni, F. S. K., & Wardana, M. D. K. (2023). Student’s difficulties in completing questions of numeracy literacy minimum competency assessment: Kesulitan siswa dalam menyelesaikan soal asesmen kompetensi minimum literasi numerasi. https://doi.org/10.21070/ups.2489

Sari, M. C. P., Mahmudi, M., Kristinawati, K., & Mampouw, H. L. (2023). Peningkatan kemampuan representasi matematis melalui model problem based learning. PTK: Jurnal Tindakan Kelas, 4(1), 1–17. https://doi.org/10.53624/ptk.v4i1.242

Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Wijaya, A., Van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 41–65. https://doi.org/10.1007/s10649-015-9595-1

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215




DOI: https://doi.org/10.34007/jdm.v6i3.2937

Refbacks

  • There are currently no refbacks.


Journal of Didactic Mathematics

Mahesa Research Center